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ABSTRACT 

This paper presents the differential transformation method to evaluate approximate solution 

of ordinary differential equation along with its application in electrical circuit problem in 

various time domain. The method has been well established with six test problems and 

comparison has been made between analytical and numerical results to obtain convergence 

to a fair degree of accuracy.The results obtained suggest that the present technique can be 

treated as an efficient and alternative method for solving initial and boundary value 

problems. 
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1. INTRODUCTION

In the first part of introduction some basic rules and 

properties on differential transformation method [2-6] have 

been reported. Section-2 contains numerical as well as 

analytical solution for homogeneous and non-homogenous 

ordinary differential equations of various order at different 

grid points. These are displayed in Table-1, Table-2 and in 

Table-3. The application of differential transformation method 

has been illustrated with various time domain t in section-3. 

These results have been represented in Table-4, Table-5 and in 

Table-6. The last section-5 bears conclusion. 

1.1 Rules of DTM 

 𝑌(𝑘) represents the differential transformation of the 𝑘th 

derivative of the function y(𝑥) which is defined as  

𝑌(𝑘) =
1

𝑘!
[

𝑑𝑘𝑦(𝑥−𝑥0)

𝑑𝑥𝑘 ]          (1) 

The inverse differential transformation of 𝑌(𝑘) is defined 

as 

𝑦(𝑥) = ∑ 𝑌(𝑘)(𝑥 − 𝑥0)𝑘∞
𝑘=0  (2) 

But for practical purposes equation (2) is represented as a 

finite series as follows: 

𝑦(𝑥) = ∑ 𝑌(𝑘)(𝑥 − 𝑥0)𝑘𝑛
𝑘=0  (3) 

Assuming the centre of the above series at zero and 

combining the results of equation (1) and equation (3) the 

function (𝑥) can be expressed as  

𝑦(x) = ∑
1

k!
[

dky(x)

dxk ]n
k=0 xk  (4) 

Equation (4) suggests that DTM is a finite approximation  

of Taylor’s series expansion where sum of the terms beyond 𝑘 

= 𝑛 is negligibly small and hence discarded. The following 

properties of DTM are derived from the definitions in 

equations (1) and equation (2). 

1.2 Properties of DTM 

Linearity: 

If 𝑦(𝑥) = 𝑎𝑓(𝑥) ± 𝑏𝑔(𝑥) then 𝑌(𝑘) = 𝑎𝐹(𝑘) ±
𝑏𝐺(𝑘)where 𝑎 and 𝑏 are constants. 

Product Rule:   

If𝑦(𝑥) = 𝑓(𝑥)𝑔(𝑥) then 𝑌(𝑘) = ∑ 𝐹(𝑘1)𝐺(𝑘 − 𝑘1) 𝑛
𝑘1=0

Transformation of Polynomial:  

If 𝑦(𝑥) = 𝑥𝑛 then 𝑌(𝑘) = 𝛿(𝑘 − 𝑛) = 𝑓(𝑥) = {
1, 𝑘 = 𝑛
0, 𝑘 ≠ 𝑛

Transformation of 𝑚th order differential:  

If𝑦(𝑥) =
𝑑𝑚𝑔(𝑥)

𝑑𝑥𝑚  then 𝑌(𝑘) =
(𝑘+𝑚)!

𝑘!
𝑌(𝑘 + 𝑚)

Transformation of exponential function: 

If 𝑦(𝑥) = 𝑒𝜆𝑥 then 𝑌(𝑘) =
𝜆𝑘

𝑘!
, where 𝜆   is a constant. 

Transformation of trigonometric function: 

If 𝑦(𝑥)={
sin (𝜔𝑥 + 𝛼)
cos (𝜔𝑥 + 𝛼)

 then 

𝑌(𝑘) = {

𝜔𝑘

𝑘!
𝑠𝑖𝑛 (

𝑘𝜋

2
+ 𝛼)

𝜔𝑘

𝑘!
𝑐𝑜𝑠 (

𝑘𝜋

2
+ 𝛼)

where 

𝜔 𝑎𝑛𝑑 𝛼  are constants. 

2. NUMERICAL EXAMPLES:

The following examples of IVP establish the effectiveness 

of DTM at select grid points. 

Example 1: 

𝑦′′′ − 𝑦′′ − 𝑦′ + 𝑦 = 0, 𝑦(0) = 2, 𝑦′(0) = 1, 𝑦′′(0) = 0.  

The exact solution of the above problem is 
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𝑦(𝑥) = (2 − 𝑥)𝑒𝑥  
 

From the initial values we have  

 

𝑌(0) = 2, 𝑌(1) = 1, 𝑌(2) = 0 . 
 

Succesive application of DTM gives the recursive relation 

 

𝑌(𝑘 + 3) =
1

(𝑘+1)(𝑘+2)(𝑘+3)
((𝑘 + 1)(𝑘 + 2)𝑌(𝑘 + 2) +

(𝑘 + 1)𝑌(𝑘) − 𝑌(0))  
 

Using the above relation and initial values 

 

𝑌(3) = −
1

6
, 𝑌(4) = −

1

12
, 𝑌(5) = −

1

30
  

 

Using equation (3) the solution has been obtained as 

 

𝑦(𝑥) = 2 + 𝑥 −
1

6
𝑥3 −

1

12
𝑥4 −

1

40
𝑥5 −

1

180
𝑥6 −

1

1008
𝑥7 −

1

6720
𝑥8 −

1

51840
𝑥9 − ⋯ ⋯ ⋯ ⋯ ⋯ ⋯  

 
Example 2: 

 

𝑦′′ + 2𝑦′ + 𝑦 = 𝑒−𝑥 , 𝑦(0) = −1, 𝑦′(0) = 1. 
 

The exact solution to the above problem is 

 

 𝑦(𝑥) = (
1

2
𝑥2 − 1) 𝑒−𝑥   

 
Applying DTM to the given problem we have  

 

And 

 

𝑌(0) = −1, 𝑌(1) = 1  
 

Using the recursive relation and inverse DTM the following 

solution to the given IVP is 

 

𝑦(𝑥) = −1 + 𝑥 −
1

3
𝑥3 +

5

24
𝑥4 −

3

40
𝑥5 +

7

360
𝑥6 −

1

252
𝑥7 +

3

4480
𝑥8 −

1

10368
𝑥9 − ⋯ ⋯ ⋯ ⋯ ⋯ ⋯  

 
Example 3: 

 

𝑦′′ + 4𝑦′ + 5𝑦 = 𝑒−𝑡 𝑠𝑖𝑛 2𝑡 , 𝑦(0) = 0, 𝑦′(0) = 1. 
 

Exact solution is 

 

𝑦(𝑡) =
2

5
𝑒−2𝑡 𝑠𝑖𝑛 𝑡 −

1

5
𝑒−2𝑡 𝑐𝑜𝑠 𝑡 +

1

5
𝑒−𝑡(𝑐𝑜𝑠 𝑡 + 2 𝑠𝑖𝑛𝑡)  

 
Here 𝑌(0) = 0, 𝑌(1) = 1  and application of DTM yields 

the recursive relation  

 

𝑌(𝑘 + 2) =
1

(𝑘+1)(𝑘+2)
[∑

(−1)𝑘−𝑟

(𝑘−𝑟)!𝑘!

𝑘
𝑟=0 𝑐𝑜𝑠 (

𝑘𝜋

2
) − 4(𝑘 +

1)𝑌(𝑘 + 1) − 5𝑌(𝑘)]  

 
By applying inverse DTM, solution of the IVP is as follows 

𝑦(𝑡) = 𝑡 −
3

2
𝑡2 + 𝑡3 −

3

8
𝑡4 +

1

15
𝑡5 +

1

80
𝑡6 −

1

70
𝑡7 +

27

4480
𝑡8 −

31

18144
𝑡9 + ⋯ ⋯ ⋯ ⋯ ⋯  

3. APPLICATION OF DIFFERENTIAL 

TRANSFORMATION METHOD (DTM) 

 

In this section application of DTM on electrical 

circuits(RLC) has been considered. Zhou[1] is the pioneer of 

the adopted method who efficiently implemented it in solving 

the electrical circuit problems governing Kirchhoff's voltage 

laws. The exact solution to the given problems can be obtained 

in polynomial form by using Laplace Transformation or power 

series method. By the present method an alternative 

approximate solution is obtained by using following results. 

By the basic properties and definitions of Kirchhoff’s Voltage 

law(KVL). 

 

( ) =++ tEdtI
C

IRIL
1

                                       (5) 

 
where E(𝑡) is the electromotive force, E0 = constant, 

 

𝐿 = Inductance, R = Resistance 

 

𝐶 = Capacitance   and I(𝑡) = The instantaneous current  

The integral equation(5) after differentiation becomes 

 

( )
L

tE
I

LC
I

L

R
I


=++

1

                                              (6) 

 
The equation(6) is a non homogeneous second order 

differentialequation [8]. 

Three examples have been selected governing KVL. 

 

Example 4: 

 

𝐼′′ + 4𝐼′ + 3𝐼 = 4.5 sin 2𝑡 with 𝐼(0) = 0 = 𝐼′(0) 

 

The exact solution to the problem is: 

 

𝐼(𝑡) = −
9

26
𝑒−3𝑡 +

117

130
𝑒−𝑡 −

72

130
𝑐𝑜𝑠 2𝑡 −

9

130
𝑠𝑖𝑛 2𝑡  

 
Applying DTM with 𝑌(0) = 𝑌(1) = 0 and the recursive 

relation 

 

𝑌(𝑘 + 2) =
1

(𝑘 + 1)(𝑘 + 2)
(−4(𝑘 + 1)𝑌(𝑘 + 1) 

−3𝑌(𝑘) + 4.5
2𝑘

𝑘!
𝑠𝑖𝑛

𝑘𝜋

2
)  

 
the given IVP has the solution 

 

𝐼(𝑡) = −
3

2
𝑡3 −

3

2
𝑡4 +

27

40
𝑡5 −

3

10
𝑡6 +

17

112
𝑡7  

−
67

1120
𝑡8 +

251

13440
𝑡9 + ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯  

 
Example 5: 

Solution for the current I(t) in an RLC circuit with R=3 

ohms,L=.5 henry,C=.08 farad and E = 12cos5t assuming zero 

current and charge at initial time. 

The required IVP is  

 

𝐼′′ + 6𝐼′ + 25𝐼 = −120 𝑠𝑖𝑛 5𝑡 , 𝐼(0) = 0, 𝐼′(0) = 0  
 

Exact solution: 
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𝐼(𝑡) = 𝑠𝑖𝑛 4𝑡 (
3

2
𝑐𝑜𝑠 9𝑡 −

1

2
𝑠𝑖𝑛 9𝑡 +

3

2
𝑐𝑜𝑠 𝑡 −

9

2
𝑠𝑖𝑛 𝑡) −

𝑐𝑜𝑠 4𝑡 (
1

2
𝑐𝑜𝑠9𝑡 +

3

2
𝑠𝑖𝑛 9𝑡 −

9

2
𝑐𝑜𝑠 𝑡 −

3

2
𝑠𝑖𝑛 𝑡) −

4 𝑒−3𝑡𝑐𝑜𝑠 4𝑡 − 3𝑒−3𝑡 𝑠𝑖𝑛 4𝑡  
 

Applying DTM, we have  𝑌(0) = 0, 𝑌(1) = 0  and the 

recursive relation 

 

𝑌(𝑘 + 2) =
1

(𝑘+1)(𝑘+2)
(−6(𝑘 + 1)𝑌(𝑘 + 1) − 25𝑌(𝑘) −

120
5𝑘

𝑘!
𝑠𝑖𝑛

𝑘𝜋

2
)  

 
Application of inverse DTM gives the polynomial solution 

as  

𝐼(𝑡) = −100𝑡3 + 150𝑡4 + 70𝑡5 − 195𝑡6 +
715

14
𝑡7 +

195

4
𝑡8 −

2635

108
𝑡9 +

79

72
𝑡10 ⋯ ⋯ ⋯ ⋯ ⋯  

 
Example 6: 

Solution for the current 𝐼(𝑡)in an R-L-C circuit with 

𝑅 = 80 𝑜ℎ𝑚𝑠, 𝐿 = 10 ℎ𝑒𝑛𝑟𝑦, 𝐶 = .004 𝑓𝑎𝑟𝑎𝑑  
 
and 𝐸 = 240.5 sin 𝑡   assuming  zero current and charge at 

initial time: 

The required IVP is 

 

𝐼′′ + 8𝐼′ + 25𝐼 = 24.05 𝑐𝑜𝑠 𝑡 , 𝐼(0) = 0, 𝐼′(0) = 0  
 

Exact solution: 

 

Applying DTM we have  𝑌(0) = 0, 𝑌(1) = 0   and the 

recursive relation 

 

𝑌(𝑘 + 2) =
1

(𝑘+1)(𝑘+2)
(−8(𝑘 + 1)𝑌(𝑘 + 1) − 25𝑌(𝑘) +

24.05 𝑐𝑜𝑠
𝑘𝜋

2
)  

 
Application of inverse DTM yields the polynomial solution 

 

𝐼(𝑡) =
481

40
𝑡2 −

481

15
𝑡3 +

9139

240
𝑡4 −

6253

300
𝑡5 −

6253

1600
𝑡6 +

⋯ ⋯ ⋯ ⋯ ⋯  
 

The following tables show the exact value, approximate 

value and absolute error in the solution of given IVPs by 

executing DTM. 

 

Table 1. Example 1 

 

x Exact Value Approximate Value Absolute Error 

0.1 2.099824744343730 2.099824744343730 0.000000000000000 

0.2 2.198524964688300 2.198524964688310 4.884981308350689e-15 

0.3 2.294759972879200 2.294759972879610 4.107825191113079e-13 

0.4 2.386919516226030 2.386919516235850 9.819256518994735e-12 

0.5 2.473081906050190 2.473081906165600 1.154130124803032e-10 

0.6 2.550966320546710 2.550966321412570 8.658598282806906e-10 

0.7 2.617878519711620 2.617878524476930 4.765317918042911e-09 

0.8 2.670649114190960 2.670649135096770 2.090581485703069e-08 

0.9 2.705563422272640 2.705563499406090 7.713345295812246e-08 

1 2.718281828459040 2.718282076719570 2.482605299114482e-07 

 

Table 2. Example 2 

 

x Exact Value Approximate Value Absolute Error 

0.1 -0.900313230945780 -0.900313230945790 9.992007221626400E-15 

0.2 -0.802356138016422 -0.802356138026808 1.038602537306580E-11 

0.3 -0.707481400751040 -0.707481401349163 5.981229955764880E-10 

0.4 -0.616694442352788 -0.616694452960846 1.060805798758220E-08 

0.5 -0.530714327248554 -0.530714425922912 9.867435790678050E-08 

0.6 -0.450025541597102 -0.450026151828571 6.102314689671040E-07 

0.7 -0.374921904362514 -0.374924751770211 2.847407697015300E-06 

0.8 -0.305543695599711 -0.305554506587654 1.081098794297740E-05 

0.9 -0.241908947545656 -0.241944014314341 3.506676868500480E-05 

1 -0.183939720585721 -0.184040178571429 1.004579857079850E-04 

 

Table 3. Example 3 

 

x Exact Value Approximate Value Absolute Error 

0.1 0.001356464598500 0.001356464598485 1.499993705633695e-14 

0.2 0.009798598745439 0.009798598715429 3.001000142832666e-11 

0.3 0.029801158441399 0.029801155907170 2.534228996792232e-09 

0.4 0.063497061223301 0.063497002617905 5.860539599444881e-08 

0.5 0.111140193030166 0.111139526367187 6.666629790014200e-07 

0.6 0.171495395053878 0.171490552827429 4.842226449003340e-06 

0.7 0.242178918565363 0.242153108741396 2.580982396699350e-05 

0.8 0.319964492938543 0.319854795629714 1.096973088290376e-04 

0.9 0.401064032741230 0.400671801838366 3.922309028639992e-04 

1.0 0.481387476388215 0.480163690476191 0.001223785912024 
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Table 4. Example 4 

 

x Exact Value Approximate Value Absolute Error 

0.1 0.085963177796689 0.085963177796690 9.992007221626400E-16 

0.2 0.147421965065099 0.147421965066131 1.032007812540310E-12 

0.3 0.189130851998201 0.189130852086716 8.851500088447040E-11 

0.4 0.215113997716010 0.215113999795245 2.079235006391400E-09 

0.5 0.228750064528217 0.228750088538653 2.401043600053220E-08 

0.6 0.232853257577284 0.232853434512000 1.769347159896730E-07 

0.7 0.229748790415279 0.229749746699376 9.562840970200880E-07 

0.8 0.221341795521528 0.221345914634384 4.119112855999190E-06 

0.9 0.209179272281065 0.209194191246877 1.491896581198850E-05 

1 0.194505064836663 0.194505064836663 4.712872594700430E-05 

 

Table 5. Example 5 

 

x Exact Value Approximate Value Absolute Error 

0.1 -0.084489429654472 -0.084489429645569 8.902989456771593e-12 

0.2 -0.549313882391200 -0.549313865210582 1.718061803934745e-08 

0.3 -1.443162311236885 -1.443160940833929 1.370402956002437e-06 

0.4 -2.532605788606551 -2.532576547487832 2.924111871882573e-05 

0.5 -3.441829862462138 -3.441530903811178 2.989586509598574e-04 

0.6 -3.807368479298738 -3.805476693942859 1.891785355879e-03 

0.7 -3.407366376454890 -3.398922232355096 8.444144099794e-03 

0.8 -2.236434699645677 -2.207983015686777 2.8451683958900e-02 

0.9 -0.512895321161074 -0.438877301576769 7.4018019584305e-02 

1 1.377857673138121 1.520502645502649 1.42644972364528e-01 

 

Table 6. Example 6 

 

x Exact Value Approximate Value Absolute Error 

0.1 0.091780451967744 0.091780451970833 3.089001276990189e-12 

0.2 0.278654281953035 0.278654287231048 5.278013026632777e-09 

0.3 0.474228441488846 0.474228816512148 3.750233019683691e-07 

0.4 0.636632986671345 0.636640130869728 7.144198382991185e-06 

0.5 0.751102449034015 0.751167469125576 6.502009156095223e-05 

0.6 0.817595653557294 0.817957675548001 3.620219907070066e-04 

0.7 0.842765777105223 0.844146651241225 1.380874136002e-03 

0.8 0.835237962554497 0.838929065323003 3.691102768506e-03 

0.9 0.803168295545608 0.809094077290491 5.925781744883e-03 

1 0.753238351345508 0.750535232032627 2.703119312881e-03 

 

 

4. CONCLUSION 

 

The numerical analysis of results between analytical 

method and DTM shows high degree of accuracy. The 

method followed is effective and computation is less time 

consuming. So the prescribed method suggests a better 

approach for the solution of higher order IVPs. 
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